
11. NUMERICAL TECHNIQUES 

Abstract — Meshless Methods, also called Meshfree 

Methods are a class of numerical methods to solve partial 

differential equations. The main characteristic of these 

methods is that they do not need a mesh like the one used in the 

Finite Element Method. In this sense meshless methods are 

very useful for modeling moving structures, such as electric 

machines, without a remeshing process. In this work the 

Element-Free Galerkin Method is used to simulate a three 

phase induction motor model that includes the field circuit 

coupling equations and the rotor movement.  

I. INTRODUCTION 

Meshless methods are robust techniques used to study 

field problems. In these methods there is no need to 

explicitly establish connectivity relationships among the 

discretization nodes: there is no mesh, as it happens in finite 

element (FEM) or finite difference methods. It is only 

necessary a cloud of nodes that cover the problem domain 

[1]–[4]. This class of method is increasingly being used for 

doing electromagnetic field computations, especially 

because they can deal with changing geometry easier than 

other numerical methods such as the Finite Element 

Method. In this sense, one of the potential applications for 

meshless methods are electrical machines.  

In our previous works we have developed some new 

techniques that are useful to model electrical machines 

using meshless methods, including the treatment of periodic 

boundary conditions [4] and material discontinuities [5]. In 

this paper we propose a new approach for the electrical 

machines modeling. Our technique uses the Element-Free 

Galerkin Method (EFGM) to solve the field-circuit coupling 

equations and the movement modeling.  

II. ELEMENT-FREE GALERKIN METHOD 

The Element-Free Galerkin Method is a meshfree method  

whose major features are: 1) Moving least squares (MLS) 

are often employed for the construction of the shape 

functions; 2) Galerkin weak form is employed to develop 

the system of equations; 3) A background mesh is required 

to carry out the integration used to build the system matrices 

[1] - [3]. 

In EFGM the shape functions are constructed using the 

MLS approximation [3], which uses a  local approximation 

function given by: 
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where x
T
=[x,y] and p(x) is a vector of monomial 

basis. 
 The unknown parameters a(x) are determined 

minimizing the weighted discrete L2 norm given by: 
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where w is the weight function. 

Equation 2 leads to
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 By substituting (3) into (1) 
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 is the MLS shape function. 

III. THE ELECTRICAL MACHINE MODEL 

A three-phase, 4 poles, 50Hz, 2 HP squirrel-cage 

induction motor is modeled. Due to symmetry 

considerations and using anti-periodic boundary conditions, 

only ¼ of it needs to be modeled. The original motor has a 

total of 36 stator slots with 44 Amp*Turns. There are  28 

slots on the rotor filled with aluminum ( = 34.45 MS/m) 

with 100mm depth [7]. Figure 1 shows the motor geometry 

used in this work. 

 
Fig. 1. Motor geometry  

 

The field-circuit equations for this machine are expressed 

as [6]: 
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A is the magnetic vector potential, ν is the magnetic 

reluctivity, σ is the conductivity, Js is the current density 

source represented in figure 1 by the phases A, B and C.  St 

is the section of each rotor conductor,  l is its length, Ut is 

the voltage on the bar terminals and It is the current on it. 

The Element-Free Galerkin method is applied to 

equations (9), (10) and (11), with shape functions given by 

(8). After this and considering all rotor bars of the study 

domain, a set of matrix equations is obtained as follows: 
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where K is the stiffness matrix, N is the matrix related to 

shape functions, C1 C2 and C3 are auxiliary matrix obtained 

by  Kirchhoff’s laws and P and Q are matrix related to rotor 

bars [6].     

The movement modeling consists basically in rotor nodes 

translation, with their new positions evaluated each time 

step using the rotor speed. Another important aspect that 

should be observed is the periodic boundaries that are 

constantly changing. For this, a special treatment is 

necessary and will be discussed in detail in the extended 

version of this paper.  

IV. PRELIMINARY RESULTS 

The results were obtained using the model presented in 

the previous section. Initially, the machine is locked. The 

induced current in bar 6, evaluated by EFGM, is shown in 

figure 2 (see figure 1 to identify bar numbers). For 

validation, the results obtained by FEMM, a finite element 

software that deal with field-circuit coupling using a 

classical approach [7], are also presented. 

 
Fig. 2. Current in rotor bar n0 6 - FEM/EFGM. 

 

Figures 3 and 4 show the machine flux distribution in two 

different time moments.  The machine is running with 10% 

slip. The simulations use anti-periodic boundary conditions. 

 
Fig. 3. Resulting magnetic flux distribution at the initial moment. 

 
Fig. 4.  Resulting magnetic flux distribution after 1,65ms.  

V. CONCLUSION 

In this paper, a new approach for induction machines 

modeling was proposed using the Element-Free Galerkin 

Method. The movement implementation, one difficult task 

to other methods, was done considering essentially the rotor 

nodes translation. In this sense meshless methods show their 

contribution in solving this important electromagnetic 

problem.  
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